Share the joy
Suppose we have training sets for y = 3 + 2 * x1 + x2, run below code to find the coefficient and intercept.
import numpy as np from sklearn import datasets, linear_model # z = 3 + 2 * x1 + x2 X = np.array([ [3, 0], [0, 3], [1, 1], [2, 3], [4, 1] ]) z = np.array([ [11 + 0.5], [5 + 0.7], [6 - 0.3], [11 + 0.2], [15 - 0.8] ]) # Plot outputs regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(X, z) print regr.coef_ # slope print regr.intercept_ # interceptor
My code on github: LR 2 features